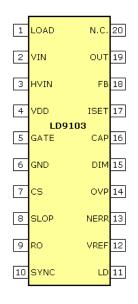


Preliminary - LD9103

High Accuracy Constant Current Off-Line High Brightness LED Driver


Features

- High accuracy constant current
- Constant frequency or constant off-time operation
- Works with high side current sensing
- Buck switch mode controller
- Internal 420V linear regulator (can be extended using external zener diodes)
- Internal 2% Voltage Reference
- High PWM dimming ratio
- Programmable MOSFET current limit
- Programmable slope compensation
- Output short circuit protection
- Output over voltage protection
- Enable & PWM dimming
- Soft start
- +0.2A/-0.4A GATE drive
- Synchronization capability
- Fast rise/fall time: 0.3/0.6uS (Current Monitor)
- Typical gain 1±1% (Current Monitor)
- Max. V_{SENSE} 500mV (Current Monitor)
- Max. quiescent current 200µA (Current Monitor)

Applications

- TFT flat panel backlighting
- AC/DC LED lamp
- LED traffic light
- T5, T8 LED line bar
- MR-16 lamp
- Signage or decorative LED lamp

Package Pin Out

General Description

The LD9103 is a current mode control LED driver IC embedded with high side current monitor. It has been designed for the purpose of controlling single buck switch mode PWM converters at a fixed frequency or fixed off-time mode.

The high side current monitor is built to transfers a high side current measurement voltage to its ground referenced output with an accurate voltage gain of one. This monitor function features with a very wide input voltage range, high accuracy of transfer ratio, and low power consumption. A peak current control scheme is used by the controller (with programmable slope compensation). It includes an internal trans-conductance amplifier to modify the output current in closed loop. This allows high output current accuracy. Also the rise time and fall time of output is less than 1uS.

For high power applications, the IC also comprises a 0.2A source and 0.4A sink GATE driver. There is an internal 9 to 420V linear regulator which powers the IC. This makes it no longer necessary to separate power supply for the IC. The LD9103 provides a TTL compatible, PWM dimming input that can accept an external control signal with a duty ratio of 0-100% and a frequency of up to a few kilohertz.

The IC has the function of a NERR output which, can be used to disconnect LEDs in the circumstance that there is a fault condition it will use an external disconnect FET.

The LD9103 based LED driver ideally suited to RGB backlight applications with DC inputs. The LD9103 based LED lamp drivers can reach efficiency of more than 90%.

Ordering Information

		Packing Options			
Part No.	Package	Tube(TU)	Tape & Reel(TR)		
LD9103	SOP-20	LD9103S5-TU	LD9103S5-TR		

Package material default is "Green" package.

Product Marking

♦ Line 1 – "LD" is a fixed character 8888: product name

♦ Line 2 – SSSSS…: lot number

Absolute Maximum Ratings

Parameter	Maximum	Unit			
HVIN, V _{LOAD} to GND	-0.5~ +420	V			
VDD to GND	-0.3~ +13.5	V			
DIM, GATE, CS, all other pins to GND	-0.3~VDD+0.3	٧			
V _{OUT} to GND (Current Monitor)	-0.5~ +10.0	V			
V _{SENSE} = HVIN - V _{LOAD} (Current Monitor)	-0.3~ +5.0	V			
I _{LOAD} (Current Monitor)	-10.0~ +10.0	mA			
Continuous Power Dissipation (T _A = +25°C)					
20-Pin SOIC, de-rate 10.0mW/°C above +25°C	1000	mW			
Junction to ambient thermal impedance	82	°C/W			
Operating ambient temperature range	-40~ +85	°C			
Junction temperature	+125	°C			
Storage temperature range	-65~ +150	°C			

The values beyond the boundaries of absolute maximum rating may cause the damage to the device. Functional operation in this context is not implied. Continuous use of the device at the absolute rating level might influence device reliability. All voltages have their reference to device ground.

Electrical Characteristics

HVIN=24V, T_A=25°C unless specified, otherwise minimum and maximum values are guaranteed by production testing requirements.

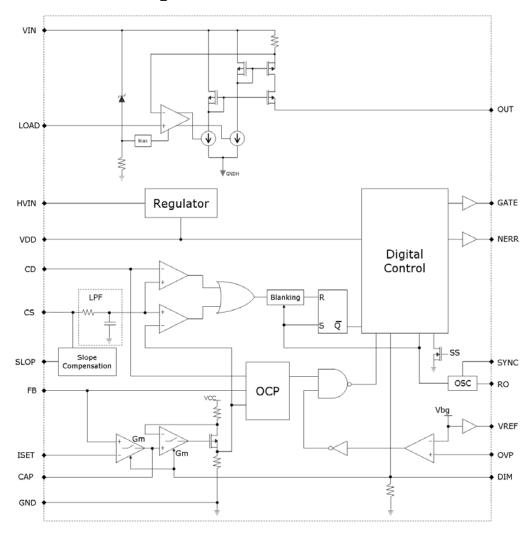
Parameter	Symbol	Condition		Тур.	Max.	Unit			
Input									
Input DC supply voltage range	out DC supply voltage range HVIN _{DC} DC input voltage		9*1	ı	420	V			
Shut-down mode supply current	I _{INSD}	DIM connected to GND, HVIN _{DC} = 24V	_	1.0	1.5	mA			
Internal Regulator	Internal Regulator								
Internally regulated voltage	V_{DD}	HVIN _{DC} = 9~420V, IDD(ext) = 0, DIM= GND		7.75	8.25	V			
VDD under voltage lockout threshold	UVLO	VDD rising	6.20	6.90	7.20	V			
VDD under voltage lockout hysteresis	VDD under voltage lockout hysteresis ΔUVLO –		_	500	-	mV			
Steady state external voltage that can be applied at the VDD pin ⁻²	V _{DD} (ext)	_	_	ı	12	V			
Reference									
VREF pin voltage	REF pin voltage VREF bypassed with a 0.1µF capacitor to GND; ISET= 0; VDD = 7.75V; DIM = GND		1.225	1.25	1.275	V			
Line regulation of reference voltage V _{REFLINE}		VREF bypassed with a 0.1µF capacitor to GND; ISET = 0; VDD = 7.25 – 12V; DIM = GND		_	20	mV			
Load regulation of reference voltage	$V_{REFLOAD}$	VREF bypassed with a 0.1μF capacitor to GND; ISET = 0-500μA; DIM = GND	0	ı	20	mV			
PWM Dimming									
DIM input low voltage	$V_{\text{PWMD(Io)}}$	VDD = 7.25V – 12V	_	ı	8.0	V			
DIM input high voltage	$V_{\text{PWMD(hi)}}$	VDD = 7.25V – 12V	2.0	ı	ı	V			
DIM pull-down resistance	R _{PWMD}	V _{PWMD} = 5.0V	50	100	150	ΚΩ			
Over Voltage Protection									
IC shut down voltage	V _{OVP}	VDD = 7.25 – 12V ; OVP rising	1.215	1.25	1.285	V			

Notes:

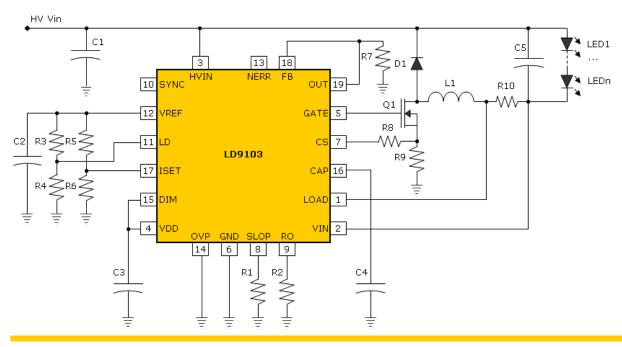
See application section for minimum input voltage
 Parameters are not guaranteed to be within specifications if the external VDD voltage is greater than VDD(ext) or if VDD < 7.25V.

Electrical Characteristics (Continued)

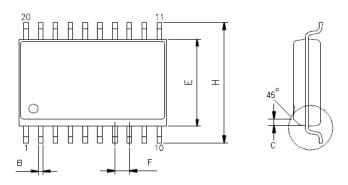
HVIN=24V, T_A=25°C unless specified, otherwise minimum and maximum values are guaranteed by production testing requirements.

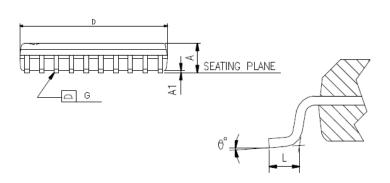

Por Para Late Constitution of the Process of the Constitution of the Process of the Constitution of the Co								
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit		
GATE								
GATE short circuit current	I _{SOURCE}	$V_{GATE} = 0V$; $VDD = 7.75V$	0.2	_	_	Α		
GATE sinking current	I _{SINK}	V _{GATE} = 7.75V ; VDD = 7.75V		_	_	Α		
GATE output rise time	T _{RISE}	C _{GATE} = 1nF; VDD = 7.75V		50	85	ns		
GATE output fall time	T _{FALL}	$C_{GATE} = 1nF; VDD = 7.75V$	_	25	45	ns		
Current Sense								
Leading edge blanking	T _{BLANK}	_	100	_	500	ns		
Delay to output of CAP comparator	T _{DELAY1}	CAP = VDD ; LD = VREF; V _{ISEN} = 0 to 600mV step	_	_	180	ns		
Delay to output of CLIMIT comparator	T _{DELAY2}	CAP = VDD ; LD = 300mV ; V _{ISEN} = 0 to 400mV step	_	_	180	ns		
Comparator offset voltage	V _{OFFSET}	-	0	_	50	mV		
Oscillator								
	f _{OSC1}	RO = 1ΜΩ	66	77	88			
Oscillator frequency	f _{OSC2}	RO = 220ΚΩ	327	372	416	KHz		
	f _{OSC3}	RO = 2ΜΩ	33	39	44			
Maximum duty cycle	D _{MAX}	-	_	90	_	%		
Sync output current	I _{OUTSYNC}	-	_	25	40	μA		
Sync input current	I _{INSYNC}	V _{SYNC} < 0.1V	0	_	200	μA		
Output Short Circuit								
Propagation time for short circuit detection	T _{OFF}	ISET = 200mV; FB = 450mV; NERR goes from high to low	_	_	500	ns		
Fault output rise time	T _{RISE,NERR}	1nF capacitor at NERR pin	_	_	300	ns		
Fault output fall time	T _{FALL,NERR}	1nF capacitor at NERR pin	_	_	200	ns		
Amplifier gain at ISET pin	G _{FAULT}	·		2	2.2	_		
Soft Start								
Current into LD pin when pulled low	I _{CLIM}	NERR is low; 6.25KΩ between VREF and LD		_	250	μA		
Slope Compensation		1	•	ı	ı			
Current sourced out of SLOP pin	I _{SLOPE}	_	0	_	100	μΑ		
Internal current mirror ratio	G _{SLOPE}	I_{SLOPE} = 50μA ; $RC_{SENENSE}$ = 1KΩ	1.8	2	2.2			
Current Monitor								
Supply voltage range	VIN	_	9.0	_	420	V		
Quiescent supply current	IQ	HVIN= 9~420V, V _{SENSE} = 0mV	_	_	100	μA		
Output Resistance	R _{OUT}	_	_	3.6	_	KΩ		
		Bin1 Category	310	320	330			
Output Voltage	V _{OUT}	Bin2 Category	330	340	350	mV		
while $V_{SENSE} = 350 \text{mV}$		Bin3 Category	350	360	370			
		V _{SENSE} = 0mV	0	_	20			
Output Voltage	V _{OUT}	V _{SENSE} = 100mV	79	_	121	mV		
V _{SENSE} = other ranges		V _{SENSE} = 500mV	470	_	530			
Output rise time	t _{RISE}	V _{SENSE} step 0mV to 500mV, HVIN=24V	_	0.7	_	μS		
Output fall time	t _{FALL}	V _{SENSE} step 500mV to 0mV, HVIN=24V	_	0.7	_	μS		
- arpar ian anno	*FALL	- SENSE STOP SSSILL TO SILLY, TIVILY ZAV	<u> </u>	· · ·	<u> </u>	۳۷		

Pin Description


Pin#	Name	Description
1	LOAD	This pin is the negative side of current monitor.
2	VIN	This pin is the positive side of current monitor.
3	HVIN	This pin is the input of a 420V high voltage regulator.
4	VDD	This is a power supply pin for all internal circuits. It must be bypassed with a low ESR capacitor to GND (at least 0.1uF).
5	GATE	This pin is the output GATE driver for an external N-channel power MOSFET.
6	GND	Ground return for all circuits. This pin must be connected to the return path from the input.
7	CS	This pin is used to sense the drain current of the external power FET. It includes a built-in 100ns (min) blanking time.
8	SLOP	Slope compensation for current sense. A resistor between SLOP and GND will program the slope compensation. In case of constant off-time mode of operation, slope compensation is unnecessary and the pin can be left open.
9	RO	This pin sets the frequency or the off-time of the power circuit. A resistor between RO and GND will program the circuit in constant frequency mode. A resistor between RO and GATE will program the circuit in a constant off-time mode.
10	SYNC	This I/O pin may be connected to the SYNC pin of other LD9103 circuits and will cause the oscillators to lock to the highest frequency oscillator.
11	LD	This pin provides a programmable input current limit for the converter. The current limit can be set by using a resistor divider from the VREF pin. Soft start can also be provided using this pin.
12	VREF	This pin provides 2% accurate reference voltage. It must be bypassed with at least a 10nF - 0.22µF capacitor to GND.
13	NERR	This pin is pulled to ground when there is an output short circuit condition or output over voltage condition. This pin can be used to drive an external MOSFET in the case of boost converters to disconnect the load from the source.
14	OVP	This pin provides the over voltage protection for the converter. When the voltage at this pin exceeds 1.25V, the GATE output of the LD9103 is turned off and NERR goes low. The IC will turn on when the power is recycled.
15	DIM	When this pin is pulled to GND (or left open), switching of the LD9103 is disabled. When an external TTL high level is applied to it, switching will resume.
16	CAP	Stable Closed loop control can be accomplished by connecting a compensation network between CAP and GND.
17	ISET	The voltage at this pin sets the output current level. The current reference can be set using a resistor divider from the VREF pin.
18	FB	This pin provides output current feedback to the controller by using a current sense resistor.
19	OUT	This pin usually is connected to FB for providing current output feedback. There is a typical output resistance 3.6KΩ from this pin to the ground.
20	N.C.	No contact pin

Tel: +886-3-567-8806 Fax: +886-3-567-8706


Functional Block Diagram



Typical Application Circuit

Package Outline SOP-20:

Symbols	Dimensions in Millimeters			Dimensions in Inches		
Symbols	Minimum	Normal	Maximum	Minimum	Normal	Maximum
Α	2.36	2.49	2.64	0.093	0.098	0.104
A1	0.10	ı	0.30	0.004	ı	0.012
В	0.33	0.41	0.51	0.013	0.016	0.020
С	ı	0.51	-	-	0.020	-
D	12.60	12.80	12.90	0.496	0.504	0.508
E	7.39	7.49	7.59	0.291	0.295	0.299
F	-	1.27	-	-	0.050	-
G	ı	ı	0.10	-	ı	0.004
Н	10.01	10.31	10.64	0.394	0.406	0.419
Ĺ	0.38	0.81	1.27	0.015	0.032	0.050
Θ°	0°	-	8°	0°	_	8°

LD Tech Corporation

Tel: +886-3-567-8806 Fax: +886-3-567-8706

E-mail: sales@ldtech.com.tw
Website: www.ldtech.com.tw

6