

Preliminary - LD7633

Linear LED Driver 100mA Current Adjustable

Features

- Input voltage range: 5V to 50V
- Output driving voltage: 50V(maximum)
- Output current : 100mA(maximum)
- Output dropout voltage 0.5V at 50mA
- Adjustable output current
- RoHS and green compliant packages

Applications

- High power LED driver
- LED table lamp
- Display backlight

Equivalent Block Diagram

Package Pin Out

Thermal Characteristics

Package	Power Dissipation PD @T _A =25°C	Thermal Resistance θ_{JA}				
SOT23-5L	420mW	240 °C/W				

Note: Temperature vs. Current Chart is shown on the right. Please apply the VOUT under 70 °C to prevent over heating.

General Description

The LD7633 is a continuation of Lighting Device's successful and most widely adopted linear regulator for high input voltage. It provides a further overall cost reduction alternative to the existing LED power design. It is as fully featured as the previous regulator by integrating the Lighting Device perfection technology that has proven to be high-quality and most reliable. The outstanding chip regulates to supply a constant current up to 100mA at input voltage of 5V ~ 50Vdc. The output current is programmable by adding an external resistor.

The typical application of LD7633 is to drive a high power LED with a constant current 100mA. The Built-in thermal protection is made to prevent the chip from overheating damage.

Ordering Information

		Packing Options			
Part No.	Package	Bag(BG)	Tape & Reel(TR)		
LD7633	SOT-23-5L	LD7633L2-BG	LD7633L2-TR		

Package material default is "Green" package.

Product Marking

♦

♦ Line 1 – "LD" is a fixed character 8888: product name

Line 2 - SSSSS ...: lot number

Temperature vs. VOUT Chart

Absolute Maximum Ratings

Parameter	Maximum	Units
VDD, OUT	50	V
CST	5	V
Operating Junction Temperature	-40 to +150	°C
Storage Temperature	-55 to +150	°C

The values beyond the boundaries of absolute maximum rating may cause the damage to the device. Functional operation in this context is not implied. Continuous use of the device at the absolute rating level might influence device reliability. All voltages have their reference to device ground.

Electrical Characteristics

V_{DD}=24V, T_A=25°C unless specified; or minimum and maximum values are guaranteed by production testing requirements.

Parameter	Symbol	Condition	Minimum	Typical	Maximum	Units
		V_{OUT} =0.5V, R_{CST} =12 Ω	_	20	—	
Output Current	I _{OUT}	V_{OUT} =0.5V, R_{CST} =5 Ω	-	60	-	mA
		V_{OUT} =0.5V, R_{CST} =3 Ω	_	100	_	
Output Current Deviation	I _{OUTD}	V _{OUT} =0.5V, R _{CST} =3~12Ω	_	_	±5	%
CST Current Range	I _{CST}		5	_	100	mA
Maximum Output Current	Ι _{ουτ}	I _{CST} =100mA	-	60	_	mA
Output Dropout Voltage	V_{DROP}	I _{CST} =100mA	-	0.5	-	V
Supply Current	I _{DD}		-	-	6	mA
Line Regulation	REG_{LINE}	V_{OUT} =0.5V, I_{OUT} =100mA V_{DD} =5V to 50V	-	_	1	mA/V
Load Regulation	REG_{LOAD}	V _{OUT} =0.5V to 3V	_	_	3	mA/V
Power On Delay Time*	t _{DR}	V_{DD} on to I_{OUT} on	_	16	_	μS
Power Off Delay Time*	t _{DF}	V_{DD} off to I_{OUT} off	_	3	_	μS
Thermal Shutdown Temperature*	T_{STDN}	Hysteresis 20°C	_	160	_	°C

Note: guaranteed by design, no production tested

Pin Description

Pin #	Name	Description
1	VDD	Power supply to device
2	GND	Device ground
3	OUT	Output pin. Sink current is adjusted by the current on R_{CST} , I_{OUT} =0.3V/ R_{CST}
4	CST	Output current setting input. R_{CST} from CST to GND to set bias current, I_{CST} =0.3V/ R_{CST}

Typical Application Circuit

Output voltage versus output current

External resistor versus output current

Package Outline

\square					\Box	
\prod						
Ц	Ц	L			\Box	
	Γ					

Symbols	Dimensions in Millimeters						
Symbols	Minimum	Minimum Normal Ma					
A	2.77	2.80	2.83				
В	1.59	1.60	1.62				
С	2.7	2.9	3.1				
D	1.7	1.9	2.1				
E	-	0.95	-				
F	0.39	0.4	0.41				
G	1.0	1.1	1.2				
Н	0.7	0.8	0.9				
J	0.1	0.15	0.25				
K	-	-	0.1				
L	0.2	-	-				

LD Tech Corporation

 Tel:
 +886-3-567-8806

 Fax:
 +886-3-567-8706

 E-mail:
 sales@ldtech.com.tw

 Website:
 www.ldtech.com.tw

Lighting Device Technologies Corporation DCC-LD7633-R0.3-20120102