

Preliminary – LD7112

LED DRIVER With OSP

Features

- Fast average current control
- Programmable constant off-time switching
- Linear dimming input
- PWM dimming input
- Output short circuit protection with skip mode
- Ambient operating temperature -40°C to +125°C
- Pin-compatible with the LD7101

Applications

- DC/DC or AC/DC LED driver applications
- RGB backlighting LED driver
- Backlighting of flat panel displays
- General-purpose constant current source
- Signage and decorative LED lighting
- Automotive
- Chargers

General Description

The LD7112 is an average current mode control LED driver IC operating in a constant off-time mode. Unlike LD7101, this control IC does not produce a peak-to-average error, and therefore greatly improves accuracy, line and load regulation of the LED current without any need for loop compensation or high-side current sensing. The output LED current accuracy is $\pm 3\%$.

The IC is equipped with a current limit comparator for hiccup-mode output short circuit protection.

The LD7112 can be powered from 8V to 450V supply. A PWM dimming input is provided that accepts an external control TTL compatible signal. The output current can be programmed by an internal 275mV reference, or controlled externally through a 0~1.5V dimming input.

Package Pin Out

		Packing Options		
Part No.	Package	Tube (TU)	Tape & Reel (TR)	
LD7112	SOP-8	LD7112S1-TU	LD7112S1-TR	
	SOP-16	LD7112S3-TU	LD7112S3-TR	

Package material default is "Green" package.

Product Marking

 Line 1 – "LD" is a fixed character 8888: product name
Line 2 − SSSSS...: lot number

-			
2	NC	NC	15
3	NC	RT	14
4	CS	LD	13
5	GND		12
6	NC	NC	11
7	NC	NC	10
8	GATE	PWMD	9

NC 16

Absolute Maximum Ratings

Parameter	Maximum	Unit
VIN to GND	-0.5 to +500	V
VDD to GND	12	V
CS, LD, PWMD, GATE, RT to GND	-0.3 to VDD+0.3	V
Power dissipation T _A = +25°C SOP-8	650	mW
Power dissipation T _A = +25°C SOP-16	1100	mW
Operating temperature range	-40 to +125	С°
Junction temperature range	-45 to +150	С°
Storage temperature range	-65 to +150	°C

The values beyond the boundaries of absolute maximum rating may cause the damage to the device. Functional operation in this context is not implied. Continuous use of the device at the absolute rating level might influence device reliability. All voltages have their reference to device ground.

Electrical Characteristics

V_{IN}=12V, V_{LD}=V_{DD}, V_{PWMD}=V_{DD}, T_A=25°C unless specified, otherwise values are guaranteed by production testing requirements.

Parameter	Symbol	Condition	Min	Тур.	Max	Unit	
Input							
Input DC supply voltage range ^{*2}	VINDC	DC input voltage	8.0	-	450	V	
Shut-down mode supply current ^{*2}	I _{INSD}	Pin PWMD to GND	-	0.5	1.0	mA	
Internal Regulator							
Internally regulated voltage ^{*1}	V_{DD}	$V_{IN} = 8V$, $I_{DD(ext)}=0$	7.25	7.5	7.75	V	
Line regulation of V _{DD} ^{*1}	$ riangle V_{\text{DDLINE}}$	IDDEXT = 8 to 450V	0	-	1.0	V	
Load regulation of V _{DD} ^{*1}	$\bigtriangleup V_{\text{DDLOAD}}$	IDDEXT = 0 to 1.0mA	0	-	100	mV	
V _{DD} under voltage lockout threshold ^{*2}	UVLO	V _{IN} rising	6.45	6.7	6.95	mV	
V _{DD} under voltage lockout hysteresis	∆UVLO	V _{IN} falling	-	500	-	mV	
Maximum input current ^{*1}		V _{IN} = 8V	3.5	-	-	m۸	
	INMAX	V _{IN} = 8V, limited by UVLO	1.5	-	-		
PWMD Dimming							
Pin PWMD input low voltage ^{*2}	V _{EN(lo)}	V _{IN} = 8 to 450V	-	-	0.8	V	
Pin PWMD input high voltage ^{*2}	V _{EN(hi)}	V _{IN} = 8 to 450V	2.2	-	_	V	
Pin PWMD pull-down resistance	R _{EN}	V _{PWMD} = 5V	50	100	150	KΩ	
Average Current Sense Logic							
Current sense reference voltage	V _{CS}	-	268	-	286	mV	
LD to CS voltage ratio	A _{LD}	-	0.182	-	0.188	-	
LD to CS voltage offset	VOFST	$V_{OFST} = V_{CS} - A_{LD} + V_{LD}, V_{LD} = 1.2V$	0	_	10	mV	
CS threshold temperature regulation ^{*2}	$ riangle V_{CS}$	-	0	-	5.0	mV	
LD shutdown input voltage	V _{LDSDN}	V _{LD} falling	-	150	-	mV	
LD enable input voltage	V _{LDENB}	V _{LD} rising	-	200	-	mV	
Current sense blanking interval ^{*2}	TBLANK	-	150	_	320	nS	
Minimum on-time	T _{ONMIN}	CS = Vcs+ 30mV	_	_	1000	nS	
Maximum steady state duty cycle	D _{MAX}	Current reduced may occur if beyond	75	-	-	%	
Short Circuit Protection							
HICCUP threshold voltage	V _{CSTH}	-	410	_	470	mV	
Current limit delay CS to GATE	T _{DELAY}	CS = Vcs+ 30mV	_	_	150	nS	
Short circuit HICCUP time	THICCUP	-	350	_	550	μS	
Minimum on-time (short circuit)	T _{ONMINS}	CS = V _{DD}	-	-	430	nS	
T _{OFF} Timer							
Off time	T _{OFF}	R _T = 1.00MΩ	32	40	48	uS	
		R _T = 226KΩ	8.0	10	12	μ0	
GATE Driver							
GATE sourcing current	ISOURCE	$V_{GATE} = 0V, V_{DD} = 7.5V$	0.165		-	Α	
GATE sinking current	I _{SINK}	$V_{GATE} = V_{DD}, V_{DD} = 7.5V$	0.165	_	-	Α	
GATE output rise time	T _{RISE}	CGATE = 500pF, VDD = 7.5V		30	50	nS	
GATE output fall time	T _{FALL}	CGATE = 500pF, VDD = 7.5V	-	30	50	nS	

Note: 1. 500pF at GATE; R_T = 226K Ω , PWMD = V_{DD} . 2. Denotes the specifications which apply over the full operating ambient temperature range of -40°C < T_A < +125°C. 3. Guaranteed by design.

Block Diagram

Typical Application Circuit

Package Outline SOP8:

Symbol	Dimensions In Millmeters			Dimensions In Inches		
	Min	Nom	Max	Min	Nom	Max
A		—	4.31	—	—	0.170
A1	0.38			0.015		
A2	3.15	3.40	3.65	0.124	0.134	0.144
В		0.46			0.018	
B1		1.52			0.060	
С		0.25			0.010	
D	9.00	9.20	9.40	0.354	0.362	0.370
E	6.20	6.40	6.60	0.244	0.252	0.260
E1		7.62			0.300	_
e		2.54			0.100	
L	3.00	3.30	3.60	0.118	0.130	0.142
θ	0°		15 [°]	0°		15 [°]

SOP-16:

LD Tech Corporation

Tel: +886-3-567-8806 Fax: +886-3-567-8706 E-mail: sales@ldtech.com.tw Website: www.ldtech.com.tw

Lighting Device Technologies Corporation DCC-LD7112-R1.1-20120202

Tel: +886-3-567-8806 Fax: +886-3-567-8706 4