

Preliminary – **LD7101** UNIVERSAL HIGH BRIGHTNESS LED DRIVER

Features

- >90% efficiency
- 10V to 600V input range
- Constant-current LED driver
- Applications from a few mA to more than 1A output
- LED string from one to hundreds of diodes
- Linear and PWM dimming capability
- Input voltage surge ratings up to 600V

Applications

- DC/DC or AC/DC LED driver applications
- RGB backlighting LED driver
- Backlighting of flat panel displays
- General-purpose constant current source
- Signage and decorative LED lighting
- Automotive
- Chargers

Package Pin Out

8-Pin SO-8 / DIP

General Description

The LD7101 is a PWM high-efficiency LED driver control IC. It allows efficient operation of high-brightness (HB) LEDs from voltage sources ranging from 10VDC up to 600VDC.

The LD7101 controls an external MOSFET at fixed switching frequencies up to 300 kHz. The frequency can be programmed using a single resistor.

The LED string is driven at a constant current rather than a constant voltage, thus providing a constant light output and an enhanced reliability. The output current can be programmed between a few milliamps and up to more than 1.0A.

The LD7101 uses a rugged high-voltage junction isolated process that can withstand an input voltage surge up to 600V. The output current to a LED string can be programmed to any value between zero and its maximum value by applying an external control voltage at the linear dimming control input of the LD7101.

The LD7101 provides a low-frequency PWM dimming input that can accept an external control signal with a duty ratio of 0-100% and a frequency of up to a few kilohertz.

Ordering Information

		Packing Options		
Part No.	Package	Tube (TU)	Tape & Reel (TR)	
LD7101	SOP-8	LD7101S1-TU	LD7101S1-TR	

Package material default is "Green" package.

Product Marking

 ♦ Line 1 – "LD" is a fixed character 8888: product name
♦ Line 2 – SSSSS...: lot number

Absolute Maximum Ratings

Parameter	Maximum	Unit	
V _{IN} to GND	-0.5 to +600	V	
CS, LD, PWM_D, GATE to GND	-0.3 to VDD+0.3	V	
Operating Temperature range	-40 to +85	°C	
Power dissipation T _A = +25°C DIP-8	900	mW	
Power dissipation T _A = +25°C SOP-8	630	mW	
Power dissipation de-rating DIP-8	9	mW/°C	
Power dissipation de-rating SOP-8	6.3	mW/°C	
Junction Temperature	125	°C	
Storage Temperature	-65 to +150	°C	

The values beyond the boundaries of absolute maximum rating may cause the damage to the device. Functional operation in this context is not implied. Continuous use of the device at the absolute rating level might influence device reliability. All voltages have their reference to device ground.

Electrical Characteristics

T_A=25°C unless specified, otherwise minimum and maximum values are guaranteed by production testing requirements.

Parameter	Symbol	Condition	Min	Тур.	Max	Unit				
Input										
Input DC supply voltage range	VINDC	DC input voltage	10.0		600	V				
Shut-down mode supply current	I _{INSD}	Pin PWM_D to GND, V_{IN} = 8V	0.5	-	1	mA				
Regulator										
Internally regulated voltage	V _{DD}	V _{IN} = 10 to 600V, I _{DD(ext)} =0, pin Gate open	7.0	7.5	8.0	V				
Load regulation of V _{DD}	$ riangle V_{DDLOAD}$	IDDEXT = 0 to 1.0mA, 500pF at GATE; Rosc = 226kΩ, PWM_D= VDD	0	_	100	mV				
Maximal pin V _{DD} voltage	V _{DDMAX}	When an external voltage is applied			10.0	V				
V_{DD} current available for external circuitry	I _{DDEXT}	V _{IN} =10 to 100V			0.7	mA				
V _{DD} under voltage lockout threshold	UVLO	V _{IN} rising	6.45	6.7	6.95	mV				
V _{DD} under voltage lockout hysteresis	∆UVLO	V _{IN} falling	-	500	_	mV				
PWMD (Digital Dimming)										
Pin PWM_D input low voltage	V _{EN(lo)}	V _{IN} = 10 to 450V	_	_	0.8	V				
Pin PWM_D input high voltage	V _{EN(hi)}	V _{IN} = 10 to 450V	2.0	_	_	V				
Pin PWM_D pull-down resistance	R _{EN}	V _{EN} = 5V	50	100	150	KΩ				
Current Sense Comparator										
Current sense pull-in threshold voltage	V _{CS(hi)}	-	225	250	275	mV				
GATE										
GATE high output voltage	$V_{\text{GATE(hi)}}$	I _{OUT} = 10mA	V_{DD} -0.3	_	V_{DD}	V				
GATE low output voltage	$V_{GATE(lo)}$	I _{OUT} = -10mA	0	_	0.3	V				
GATE output rise time	t _{RISE}	Cgate = 500pF, Vdd = 7.5V	30	_	50	nS				
GATE output fall time	t _{FALL}	CGATE = 500pF, VDD = 7.5V	30	_	50	nS				
Oscillator										
Oscillator fraguency	f	Rosc = 1.00MΩ	20	25	30					
Oscillator frequency	TOSC	Rosc = 226KΩ	80	100	120	ŇΠΖ				
Maximum Oscillator PWM Duty Cycle	D _{MAXhf}	FPWM hf = 25kHz, at GATE, CS to GND	-	100%	-					
Pin LD (Linear Dimming) voltage range	V _{LD}	T _A = <85 C, VIN = 12V	0	-	250	mV				
Current sense blanking interval	T _{BLANK}	$V_{CS} = 0.55 V_{LD}, V_{LD} = V_{DD}$	150	215	280	nS				
Delay from CS to GATE lo	t _{DELAY}	VIN = 12V, VLD = 0.15, VCS = 0 to 0.22V after TBLANK	-	-	300	nS				

Block Diagram

Typical Application Circuit

Package Outline SOP8:

LD Tech Corporation

+886-3-567-8806 Tel: Fax: +886-3-567-8706 sales@ldtech.com.tw E-mail: Website: www.ldtech.com.tw

Lighting Device Technologies Corporation DCC-LD7101-R1.2-20120116