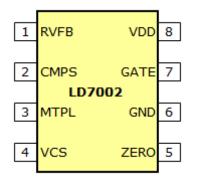


Power Factor Correction Controller

Features


- Optimized multiplier design for low total harmonic distortion (THD)
- Precise adjustable output over voltage protection
- Disable function for protection
- MOSFET over-current protection
- Zero current detector (ZCD)
- Under the universal input voltage
- 150µS internal startup time
- Under voltage lockout with 3V of Hysteresis
- Low ($\leq 35\mu A$) startup current
- Low (<1.7mÅ) operating current
- -800/+500mA totem pole gate drive with UVLO and high state clamp
- Advanced over current protection
- Patent pending

Applications

- LED bulb, T8 etc.
- LCD TV
- Adapter
- Ballast

Package Pin Out

General Description

The LD7002 is an efficient transition-mode power factor correction (PFC) controller. It detects the zero-current state and is the real zero current detector.

The LD7002 embedded with the ZCD, an optimized multiplier, and a special circuit, enable to reduce the AC input current distortion, and provides a low THD.

The LD7002 can be used under the input voltage of 110V or 220V, that is, can be used under the universal input voltage. It owns low consumption (\leq 35µA before start-up and <1.7mA running) and includes a disable function for IC remote ON/OFF.

With the features of the totem-pole output stage, capable of 800mA source and 500mA sink current, LD7002 is suitable for MOSFET drive and makes the device an excellent low-cost solution for LED bulb, T8, and LCD TV. The device also provides protection functions, such as, over voltage, over current, voltage lockout, and open loop protection.

The LD7002 especially provide an advanced over current protection function for the module.

Ordering Information

		Packing Options		
Part No.	Package	Tube(TU)	Tape & Reel(TR)	
LD7002	SOP-8	LD7002S1-TU	LD7002S1-TR	

Package material default is "Green" package.

Product Marking

 ♦ Line 1 – "LD" is a fixed character 8888: product name
 ♦ Line 2 – SSSSS...: lot number

Absolute Maximum Ratings

Parameter	Maximum	Unit		
VDD to GND	-0.3~ +30	V		
VIN to GND	-0.3~ +8	V		
GTE – IOH/IOL	±800	mA		
Zero current detector current	+10/-50	mA		
Continuous Power Dissipation ($T_A = +25^{\circ}C$)				
8-Pin SOIC, de-rate 10.0mW/°C above +25°C	700	mW		
Junction to ambient thermal impedance	120	°C/W		
Operating ambient temperature range	-25~ +125	°C		
Junction temperature	+150	°C		
Storage temperature range	-55~ +150	°C		

The values beyond the boundaries of absolute maximum rating may cause the damage to the device. Functional operation in this context is not implied. Continuous use of the device at the absolute rating level might influence device reliability. All voltages have their reference to device ground.

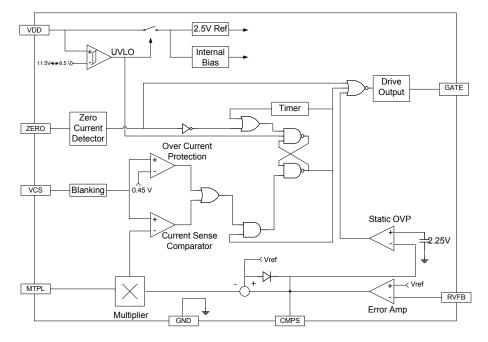
Electrical Characteristics

 V_{DD} =12V, T_A =25°C unless specified, otherwise minimum and maximum values are guaranteed by production testing requirements.

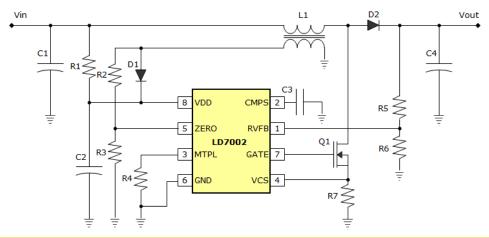
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Under Voltage Lockout						
Start threshold voltage	V _{THSTR}	V _{DD} increasing	10.5	11.5	12.5	V
Stop threshold voltage	V _{THSTP}	V _{DD} decreasing	_	8.5	_	V
UVLO Hysteresis	HY _{UVLO}		2.0	3.0	4.0	V
Zener voltage	Vz	I _{DD} = 20mA	22	25	28	V
Supply Current						
Start up supply current	I _{SU}	$V_{DD} = V_{THSTR} - 0.2V$	20	60	100	μA
Static supply current	I _{DD}	Output no switching	-	3.0	6.0	mA
Operating supply current	I _{OP}	50KHz, C _L =1nF	-	4.0	8.0	mA
Operating supply current at OVP	I _{OVP}	V _{INV} = 3V	-	1.7	4.0	mA
Error Amplifier						
Voltago foodback input throshold	V _{THER}	T _A =25°C	2.465	2.500	2.535	V
Voltage feedback input threshold		T _A =125°C	2.44	2.50	2.56	V
Line regulation	V _{LR}	V _{DD} = 14 ~ 25V	-	0.1	10.0	mV
Temperature regulation ^{*1}	V _{TR}	T _A =–25~125°C	-	20	-	mV
Input bias current	I _{BIN}	$V_{INV} = 1 \sim 4 V$	-0.5	-	0.5	μA
Output source current	I _{SRCER}	$V_{INV} = V_{THER} - 0.1V$	-2	-4	-	mA
Output sink current	I _{SNKER}	$V_{INV} = V_{THER} + 0.1V$	2	4	-	mA
Output upper clamp voltage ^{*1}	V _{CLMPU}	I _{SRCER} = 0.1mA	-	6.0	-	V
Output lower clamp voltage ^{*1}	V _{CLMPL}	I _{SNKER} = 0.1mA	_	2.25	_	V
Larger signal open loop gain ^{*1}	Gv		60	80	_	dB
Power supply rejection ratio ^{*1}	PSRR	V _{DD} = 14 ~ 25V	60	80	_	dB
Unit gain bandwidth ^{*1}	GBW		-	1.0	_	MHz
Slew rate ^{*1}	SR		-	0.6	-	V/µS

Lighting Device Technologies Corporation DCC-LD7002-R0.4-20120102

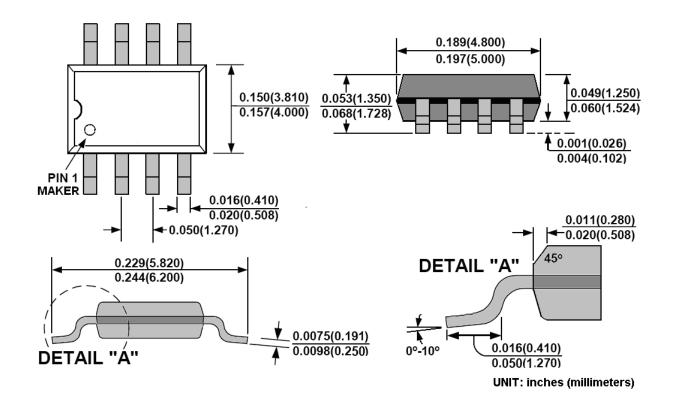
Tel: +886-3-567-8806 Fax: +886-3-567-8706


						_	
Multiplier							
MTPL input bias current	I _{BMTPL}		-0.5	_	0.5	μA	
MTPL input voltage range	V _{MTPL}		0	_	3.8	V	
CMPS input voltage range	V _{CMPS}		V_{REF}	_	V _{REF} +2.5	V	
Multiplier gain ^{*1}	К	V _{MTPL} = 1V, V _{CMPS} = 3.5V	0.18	0.22	0.26	1/V	
Maximum multiplier output voltage	V _{MTPLMAX}	$V_{RVFB} = 0V, V_{MTPL} = 4V$	1.65	1.80	1.95	V	
Temperature Stability of K ^{*1}	ΔΚ/ΔΤ	T _A =–25~125°C	_	-0.2	_	%/°C	
Current Sense							
Current sense input threshold ^{*1}	V _{CSTH}	$V_{MTPL} = 0V, V_{CMPS} = 2.2V$	-10	3	10	V	
Current sense delay time ^{*1}	T _{VCSDELAY}		_	200	500	nS	
Current limit reference voltage	V _{CS}		0.4	0.45	0.5	V	
Zero Current Detection							
Input voltage threshold ^{*1}	V _{THZ}	V _{ZERO} increasing	1.7	2.0	2.3	V	
Detect Hysteresis ^{*1}	HY _{ZERO}		0.2	0.5	0.8	V	
Input clamp low voltage	V _{CLMPL}	$I_{ZERO} = -100 \mu A$	0.45	0.75	1.00	V	
Input clamp high voltage	V _{CLMPH}	I _{ZERO} = 3mA	6.5	7.2	7.9	V	
Input bias current	I _{BZERR}	V _{ZERO} = 1 ~ 5 V	-1.0	-0.1	1.0	μA	
Input H/L clamp diode current t ^{*1}	I _{CLAMP}		-3	-	3	mA	
Gate Output							
Gate output high voltage	V_{GOH}	I _O = –10mA, T _A =25°C	10.5	11.0	-	V	
Gate output low voltage	V_{GOL}	I _O = 10mA, T _A =25°C	-	0.8	1.0	V	
Gate output rise time ^{*1}		C _L =1nF	-	130	200	nS	
Gate output fall time ^{*1}	T _{GOFALL}	C _L =1nF	-	50	120	nS	
Maximum gate output voltage	V_{GOUVLO}	V _{DD} = 20V, I _O = 100µA	12	14	16	V	
Gate output voltage under UVLO	V_{GOUVLO}	V_{DD} = 5V, I _O = 100µA	-	-	1	V	
Restart							
Restart delay time	T _{DELAYRST}	V_{MTPL} = 1V, V_{CMPS} = 3.5V	_	500	_	μS	
Over Voltage Protection							
Soft OVP detecting current	I _{SOVP}		25	30	35	μA	
Dynamic OVP detecting current	I _{DOVP}		35	40	45	μA	
Static OVP threshold voltage	V _{OVP}	$V_{RVFB} = 2.7 V$	-	0.8	-	V	

Notes: 1. Guaranteed by design, not tested in production


Pin Description

Pin #	Name	Description
1	RVFB	This pin is the inverting input of the error amplifier. The output voltage of the boost PFC converter should be resistively divided to 2.5V
2	CMPS	This pin is the output of the trans-conductance error amplifier. Components for output voltage compensation should be connected between this pin and GND.
3	MTPL	This pin set the slope of the internal ramp. The voltage of this pin is maintained at 2.9V. If a resistor is connected between this pin and GND, current flows out of the pin and the slope of the internal ramp are proportional to this current.
4	VCS	This pin is the input of the over-current protection comparator. The MOSFET current is sensed using a sensing resistor and the resulting voltage is applied to this pin. An internal RC filter is included to filter switching noise.
5	ZERO	This pin is the input of the zero current detection block. If the voltage of this pin goes higher than 1.5V, then goes lower than 1.4V, the MOSFET is turned on.
6	GND	This pin is used for the ground potential of all the pins. For proper operation, the signal ground and the power ground should be separated.
7	GATE	This pin is the gate drive output. The peak sourcing and sinking current levels are +500mA and -800mA respectively. For proper operation, the stray inductance in the gate driving path must be minimized.
8	VDD	This pin is the IC supply pin. IC current and MOSFET drive current are supplied using this pin.


Functional Block Diagram

Typical Application Circuit

Lighting Device Technologies Corporation Tel: +886-3-567-8806 Fax: +886-3-567-8706 DCC-LD7002-R0.4-20120102 4

LD Tech Corporation

Package Outline

 Tel:
 +886-3-567-8806

 Fax:
 +886-3-567-8706

 E-mail:
 sales@ldtech.com.tw

 Website:
 www.ldtech.com.tw

Lighting Device Technologies Corporation DCC-LD7002-R0.4-20120102